
Process Optimization
Technical Architecture

ProOpt has three main functional modules and
communicates with end-use applications through a
RESTful API.

1. The model training module receives training dataset
and model specification from external applications to
run a training pipeline and results in predictive
models. The models are stored in the RAMP storage
for later use by other modules.

2. The Prediction & simulation module reads process
data from external applications and returns the
predictions made by the trained models. External
applications can change process data and send the
data to this module to simulate the target quality.

3. This Control optimization module is responsible for
finding the optimal process setups to achieve the
targeted quality. This module receives process data,
the optimization constraints and the target quality
from the external application and runs the
optimization algorithm. The module returns the
optimal values of the process parameters, together
with the achieved quality

Resource optimization

ProOpt

RESTful API

Prediction &
simulation

Control
optimization

Model
training

Offline (historical), and
Online process data

Predictions,
optimized control valuesModel

specifications

External applications

Online data PredictionsModel specifications,
Offline data

Cloud
Storage
(RAMP,
private
server)

Models

Models

Optimization
constraints

Optimized control
values

Optimization
constraints

Process Optimization API
There are four API endpoints

1. External application sends process
dataset and model configuration data
to /train/queue/ endpoint in
JSON format

2. External application sends request to
/train/fetch/ endpoint to get the
model training status

3. External applications send process
data to /model/predict/
endpoint and receive the predictions

4. External application send process data
and optimization constraints to
/model/optimize/ endpoint and
receives the optimized process tags
and the achieved target quality

Examples (/model/predict/)

Request body specifies used model and recent data frame:

{

model: string,

data: Array<{

timestamp: "2020-02-04T12:35:00.000Z",

tag_name_1: float,

tag_name_2: float,

...

[key: string]: number, <--- // the amount of key and
key names are dynamic

}>

}

Response consisting of predictions (or simulations) in coming
time windows:

{

predictions: Array<float>

}

Examples (/model/optimize/)

Request body specifies list of tags to optimize:

{

tags: Array<string>, // list of tags

 model: string,

data: Array<{

timestamp: "2020-02-04T12:35:00.000Z",

tag_name_1: float,

tag_name_2: float,

...

[key: string]: number, <--- // the amount of key and
key names are dynamic

}>

}

Response returns optimal values of the tags:

{

optimizations: {

tag_name_1: float,

tag_name_2: float,

...

[key: string]: number, <--- // the amount of key and
key names are dynamic

}

}

