
Open Platform for Innovation in Logistics - Agent
Optimization

Ladislav Körösi
Institute of Robotics and Cybernetics

Slovak University of Technology
Ilkovičova 3, Bratislava 81219, Slovak Republic

ladislav.korosi@stuba.sk

František Duchoň
Institute of Robotics and Cybernetics

Slovak University of Technology
Ilkovičova 3, Bratislava 81219, Slovak Republic

frantisek.duchon@stuba.sk

Pavol Lukáč
Institute of Robotics and Cybernetics

Slovak University of Technology
Ilkovičova 3, Bratislava 81219, Slovak Republic

xlukacp1@stuba.sk

Abstract—This paper is devoted to design a new module for the
Open Platform for Innovation in Logistics (OPIL) library, which
is a part of European Union Horizon 2020 project “Grow your
manufacturing business“ known under acronym Better Factory
(Horizon 2020). The goal of the new module is to calculate the
optimal number of agents required for material transport in
logistics. This task is highly actual in the early automation of
logistics or in later extension stage. The new module is designed
as independent Docker image and can be connected with the
new connector Material Flow to the Real Time Locating system.
Two examples demonstrates the proposed method implemented
for Internet of Things (IoT) system.

Index Terms—logistics, material flow, agent, optimization, IoT,
Docker

I. INTRODUCTION

Industry 4.0 principles are applied in current modern pro-
duction systems. These principles assume a strong synergy
of deployed systems and their optimization. Material logistics
is one of the key systems, especially in highly automated
productions.

The supply chain faces mounting challenges like slow-
downs, labor shortages, congested ports, and container back-
logs. At the same time, the sector is experiencing a wholesale
makeover [2], [3]. Manufacturers are embracing digital trans-
formation in the post-pandemic world. It has become a top
priority in an environment when the pressures of a broken
supply chain continue to shape 2022 [4].

Therefore, for many reasons, digitizing material flows in
production is necessary. For this, discrete event simulation
and statistical analysis capabilities optimize material handling,
logistics, machine utilization, and labor requirements. It allows
to check for bottlenecks quickly, validate transported materials,
and view resource utilization over time for multiple process
alternatives [5], [6].

There are powerful commercial tools such as Tecnomatix
from Siemens [7], Visual Components [8], or Delmia [9] to

978-1-6654-8775-7/22/$31.00 ©2022 IEEE

design such solutions. Most of the time, the trial technique is
used in these tools. It requires an experienced engineer. Open
systems, such as the OPIL library [10] allow the implemen-
tation of more advanced functions. At the same time, their
use is also suitable for small and medium-sized enterprises. In
our research, we decided to use this platform and offer SMEs
an automated system that determines the optimal number of
logistics agents for given material flows.

II. OPEN PLATFORM FOR INNOVATION IN LOGISTICS

OPIL is the Open Platform for Innovations in Logistics.
This platform is meant to develop value-added services for
the logistics sector in small-scale Industry 4.0 contexts such
as manufacturing SMEs. It provides an easily deployable suite
of applications for the rapid development of complete logistics
solutions, including components for task scheduling, path
planning, automatic factory layout generation and navigation,
and logistics agent optimization [11].

OPIL also provides connectivity to equipment for optimal
material handling on the factory floor. These include (but are
not limited to) mobile robots, AGVs, forklifts, workers, and
sensors, as well as the IT infrastructure of the factory as
various warehouse management and ERP (Enterprise Resource
Planning) systems [11].

OPIL provides a ready integration to a state-of-the-art 3D
factory simulator (with mobile robots, AGVs, forklifts, work-
ers, and sensors) which allows for complete development and
virtual testing of the logistics solutions before actual imple-
mentation. The 3D simulator provides support for estimating
investment and guides the orchestration of the deployment
tasks. A messaging system at the heart of OPIL, based on
the FIWARE open architecture, handles interactions among
the several components of the platform as well as with the
external ones. The open architecture of OPIL (Fig. 1) supports
the usage of open-source frameworks such as ROS (Robot
Operating System) for the development of new components,
e.g., perception, mobile manipulation, etc. [11]

Fig. 1. Architecture of OPIL.

The Logistics Library consists of three layers. In each layer
the individual modules and submodules ensure the overall
operation of the library.

The first layer IoT Nodes interacts with the physical world.
One of the tasks of this layer is to ensure the correct control
of robots through the Robot Agent Node module, which not
only controls the robots but also acts as an interface between
the first and second layer, from which it receives information
about trajectories. These received entities are translated into a
language understandable by Robot Operating System (ROS)
[11].

The Sensor Agent Node module is responsible for connect-
ing and sending data from sensors. The information is sent as
an entity in Next Generation Service Interface (NGSI) format
via the HTTP REST API developed by FIWARE. Before being
sent, the raw data are processed in the Local Execution layer
[11].

Communication between individual modules is mediated by
the second layer called Cyber Physical Middleware. Specifi-
cally by the Context Management module, which is imple-
mented by FIWARE Orion Context Broker (OCB). The mod-
ule acts as a central information hub, receiving and sending
data in NGSI format and then storing them in the MongoDB
database [11].

The translation from and to the NGSI format takes place
in the Backend Device Management module and the protocol
adapter, which is implemented by FIWARE Intelligent Data
Advanced Solution [11].

The Advanced Widget mash-up HMI module implements
FIWARE Wirecloud, which allows end users without program-
ming skills to easily create web applications and dashboards
[11].

The Software System layer consists of three modules.
The Task Planner module has the task of redistributing and
monitoring executed motion tasks using the Task Supervisor
submodule, and the Motion Task Planning submodule is
responsible for planning the shortest, fastest routes and ensures
communication between robots, AGVs [11].

The Sensing & Perception (SP) module provides informa-
tion suitable for precise planning of robot movement and the
position of robots on the map. The robot has a local SP module

that creates its own map, then sends this map to the central
SP module on the servers and updates the map with new
sensor values. The local map can also be accessed by the
Robot Agent Node (RAN) module. SP module also includes
the Simultaneous Localization And Mapping function, which
can create a map if none was specified [11].

The last part is the HMI module, which includes a web
application with its own Mongo DB database. The module
serves as a user interface in which the position of the robots
their possible routes can be monitored. It allows entering and
monitoring of tasks being performed. This web application
uses the FIWARE Ngsijs Javascript library to establish a
connection between the OCB and the NGSI proxy. HMI also
includes the Agent Optimization module, which is used to
calculate the optimal number of agents for the transportation
of material [11].

III. AGENT OPTIMIZATION

In this section the agent optimization methodology and
implementation will be described.

A. Methodology

The Agent Optimization is a newly developed module in the
Logistics library. It’s based on a method published in [1]. The
module can be used in determining equipment requirements
as how many AGV’s, forklift trucks, humans, etc. will be
required to satisfy a specific flow rate in logistics. This method
is focused on a vehicle-based approach, where the agent can be
anything that transports material. The agent parameters which
are used in the optimization are

• vc - agent speed [m/min],
• TL - time to load the agent at load station [min],
• TU - time to unload the agent at unload station [min],
• c - agent capacity [pcs],
• A - availability of the agent,
• Ft - traffic factor,
• Ew - worker efficiency.

The agent speed is given by the vehicle parameters. The
average load and unload times are determined by measuring
the duration of the operations. The capacity is the maximum
number of objects that can be delivered by the agent. The
availability is a reliability factor defined as the proportion of
total shift time that the agent is operational. Traffic factor is
defined as a parameter for estimating the effect of losses due
to traffic congestion. If there is no blocking of agents (for
example at intersections), waiting in queues at load and unload
stations, the factor is chosen Ft = 1.0. The logistics efficiency
depends not only on traffic factor, but also on worker efficiency
who drives the trucks. If the agent is AGV, the factor is chosen
Ew = 1.0.

Beside the described agent parameters the distance and
flow rate matrices are needed. They are NxN matrices, where
the rows represent the source stations and the columns the
destination stations. In the distance matrix, the number d = 10
at row 2 and column 3 defines the distance from station 2
to station 3 in meters. In the flow rate matrix, the number

f = 100 at row 2 and column 3 defines the material flow
rate from station 2 to station 3 in pieces. In the proposed
algorithm negative numbers (default -1) indicate, that the agent
is returning from current station to the load station.

Distance that agent travels between load and unload station
is given by

Fij ≥ 0, Ld =

∑N
i,j=1 Fij∗Dij

c∑N
i,j=1 Fij

Fij < 0, Le =

N∑
i,j=1

Dij

(1)

where c is the agent capacity, F is the flow rate matrix,
D is the distance matrix, i and j are elements of matrices
where i represents the rows (start stations) and j the columns
(destination stations) and Le is the distance that the agent
travels empty until the start of the next delivery cycle.

The total cycle time per delivery per agent is given by

TC = TL +
Ld

vc
+ TU +

Le

vc
(2)

The number of required deliveries is calculated as

Fij ≥ 0, w =

N∑
i,j=1

Fij (3)

The ideal cycle time per delivery per agents is given as

WL = wTC (4)

Available time per hour per agent is given as

AT = 60AFtEw (5)

where A is the agent availability, Ft is the traffic factor and
Ew is the operator efficiency. Finally the optimal number of
agents is determined as

AN =
WL

AT
(6)

The result is rounded to integer number.

B. Implementation

The Logistics library is based on Docker image solutions.
We decided to create an independent Docker image with
the presented optimization algorithm. This approach ensures
independent use of the new logistics module. The architecture
of the proposed module is in Fig. 3.

The Docker image contains the application and a MongoDB
database. The database is used to store the agent parameters
and matrices that are used in optimization. The database is
saved in the host Ubuntu based PC. The interaction with the
module can be divided to

• Material Flow - It’s a new connector in Logistics library
between Real Time Locating System (RTLS). The aim of
the connector is provide inputs for Agent Optimization
collected from databases used by RTLS.

• Manual entry - entering the data manually into Mon-
goDB.

– Using MongoDB commands.
– Using the new Human Machine Interface (Fig. 2.).

• Other application - using your own application to access
the MongoDB through default port and start the optimiza-
tion.

Fig. 2. Human machine interface for Agent Optimization.

An example of command to store a document in MongoDB for
Agent Optimization is db.AGENTS.insertOne(”request id”
: ”123”, ”N” : ”3”, ”distance matrix” :
”0,50,0;0,0,60;50,0,0;”, ”flowrate matrix” :
”0,10,0;0,0,15;-1,0,0;”, ”agent speed” : ”50”,
”agent load time” : ”0.75”, ”agent unload time” :
”0.5”, ”agent capacity” : ”2”, ”agent availability” :
”0.95”, ”traffic factor” : ”0.9”, ”operator efficiency” :
”1.0”, ”result optimal number of agents” : ”1.3694”,
”result optimal number of agents rounded” : ”2”,
”result DONE” : ”0”). Command insertOne inserts
one document into DB. All values are stored as
strings, because it is easier for the end user to enter
them. The request ID is used to identify the entered
optimization by the end user. The matrices are encoded
as line of characters. The row of the matrix ends
with “;“. Numbers (elements) in rows are separated
with “,“. Variables result optimal number of agents and
result optimal number of agents rounded are the calculated
optimal values. Last variable result DONE has two states. If
its state is 0 and the application is executed, the optimization
will be performed and the value will be overwritten to 1. If
its state is 1, the optimization will be skipped.

The HMI for the Agent Optimization module was developed
in Java. The MongoDB Java Driver library was used to connect
the HMI to the MongoDB database. The HMI can insert data
directly into the database, as well as to delete or edit them.
The input data are checked before entering into database. The
validation checks the correct format, size, range, prohibited
characters, the occurrence of duplicate input data or IDs. An
example of Agent Optimization execution is in Fig. 4.

Fig. 3. Architecture of Agent Optimization.

Fig. 4. Agent Optimization - Example of optimizatiom textual output.

IV. EXAMPLES

A. Example 1

Case A

The first example consist from 3 stations (Fig. 5). The
agent parameters are: agent speed 50 m/min, time to load
0.75 min, time to unload 0.5 min, agent capacity 1 pcs, agent
availability 0.95, traffic factor 0.9 and operator efficiency 1.0.
The distance matrix (Tab. I) and flow rate matrix (Tab. II) is
defined as The calculated ideal cycle time per delivery per

TABLE I
DISTANCE MATRIX

Station 1 Station 2 Station 3
Station 1 0 50 0
Station 2 0 0 60
Station 3 50 0 0

TABLE II
FLOW RATE MATRIX

Station 1 Station 2 Station 3
Station 1 0 10 0
Station 2 0 0 15
Station 3 -1 0 0

agent is 3.37 min, the ideal cycle time per delivery per agent
is 84.25 min/hr, the available time per hour per agent 51.3
min/hr per agent and the number of required agents 1.642

0 10 20 30 40 50 60 70 80 90 100

x

0

10

20

30

40

50

60

70

80

90

100

y

Case 1

1

2

3

Fig. 5. First example.

which is rounded to 2.

Case B

In the second case we left the same distance and flow matrices
with agent parameters except the agent capacity which was
increased to 2.

The calculated ideal cycle time per delivery per agent is 2.81
min, the ideal cycle time per delivery per agent is 70.25 min/hr,
the available time per hour per agent 51.3 min/hr per agent
and the number of required agents 1.369 which is rounded to
2. We can see that the cycle times were reduced by increasing
the agent capacity, which has slightly reduced the required
agent number.

B. Example 2

Case A

The second example consist from 7 stations (Fig. 6). The
agent parameters are: agent speed 50 m/min, time to load
0.75 min, time to unload 0.5 min, agent capacity 1 pcs, agent
availability 0.95, traffic factor 0.9 and operator efficiency 1.0.
The distance matrix (Tab. III) and flow rate matrix (Tab. IV)
is defined as

TABLE III
DISTANCE MATRIX

St. 1 St. 2 St. 3 St. 4 St. 5 St. 6 St. 7
St. 1 0 65 0 0 0 0 0
St. 2 0 0 45 0 0 0 0
St. 3 0 0 0 50 0 140 0
St. 4 0 0 0 0 70 0 0
St. 5 0 0 0 0 0 120 0
St. 6 0 0 0 0 0 0 65
St. 7 45 0 0 0 0 0 0

The calculated ideal cycle time per delivery per agent is
3.61 min, the ideal cycle time per delivery per agent is 3610.0

TABLE IV
FLOW RATE MATRIX

St. 1 St. 2 St. 3 St. 4 St. 5 St. 6 St. 7
St. 1 0 200 0 0 0 0 0
St. 2 0 0 200 0 0 0 0
St. 3 0 0 0 100 0 100 0
St. 4 0 0 0 0 100 0 0
St. 5 0 0 0 0 0 100 0
St. 6 0 0 0 0 0 0 200
St. 7 -1 0 0 0 0 0 0

0 10 20 30 40 50 60 70 80 90 100 110

x

0

20

40

60

80

100

120

140

160

y

Case 2

1

2

3

4

5

6

7

Fig. 6. Second example.

min/hr, the available time per hour per agent 51.3 min/hr
per agent and the number of required agents 70.37 which is
rounded to 71.

Case B

In the second case we left the same distance and flow matrices
with agent parameters except the agent capacity which was
increased to 100.

The calculated ideal cycle time per delivery per agent is
2.165 min, the ideal cycle time per delivery per agent is 2164.6
min/hr, the available time per hour per agent 51.3 min/hr
per agent and the number of required agents 42.195 which
is rounded to 43.

V. CONCLUSION

This paper presented a new module of the Logistics Library
to determine the optimal number of required agents in logistics
for material transport. The module was developed during the
Grow your manufacturing business project known as Better
Factory (BF), which helps small and medium manufacturers
to redesign their product portfolio, increase and optimize
their logistics and production. The module was verified using
simple simulation examples and will be tested in the next BF
Knowledge Transfer Experiments (KTEs). In each example
two cases were presented. In case A, the agent had less

capacity as in case B, which should intuitively in lead to
higher number of required agents. This was proven by the
optimization results.

ACKNOWLEDGMENT

This work has been supported by Grant VEGA 1/0049/20
of the Slovak Scientific Grant Agency and by Grow your
manufacturing business - Better Factory, Grant agreement ID
951813, DOI 10.3030/951813 and by Grant VEGA 1/0049/20
of the Slovak Scientific Grant Agency.

REFERENCES

[1] M. Groover, “Automation, production systems, and computer-integrated
manufacturing“ Pearson, 4th ed., January 5, 2015, pp. 816, ISBN-13
978-0133499612.

[2] A. Dekhne, G. Hastings, J. Murnane, F. Neuhaus, “Automation in
logistics: Big opportunity, bigger uncertainty“. McKinsey, 2019, pp. 1–
12.

[3] B. Nitsche, F. Straube, M. Wirth, “Application areas and antecedents
of automation in logistics and supply chain management: a conceptual
framework“ In Supply Chain Forum: An International Journal, 2021,
vol. 22, no. 3, pp. 223–239, Taylor & Francis.

[4] “Top 5 ways to optimize logistics management“, stefanini.com,
https://stefanini.com/en/trends/news/top-5-ways-to-optimize-logistics-
management (accessed: July 8, 2022).

[5] “Optimize production logistics & material flow - Sim-
ulate logistics and material flow for improved sys-
tem performance“, www.plm.automation.siemens.com,
https://www.plm.automation.siemens.com/global/en/products/tecnomatix
/logistics-material-flow-simulation.html (accessed: July 8, 2022).

[6] M. Pekarcikova, P. Trebuna, M. Kliment, M. Dic, “Solution of bot-
tlenecks in the logistics flow by applying the kanban module in the
tecnomatix plant simulation software“, Sustainability, 2021, vol. 13, no.
14, 7989, https://doi.org/10.3390/su13147989.

[7] P. A. Russkikh, D. V. Kapulin, “Simulation modeling for optimal
production planning using Tecnomatix software“ In Journal of Physics:
Conference Series, 2020, vol. 1661, no. 1, p. 012188, IOP Publishing.

[8] A. Laemmle, S. Gust, “Automatic layout generation of robotic produc-
tion cells in a 3D manufacturing simulation environment“ Proced, 2019.

[9] H. Zhong, X. Zhang, J. Hu, S. Liu, X. Shao, “Productivity analysis and
optimization of aircraft assembly line based on Delmia-Quest“, In Asia-
Pacific International Symposium on Aerospace Technology, Singapore,
Springer, 2018, pp. 1150–1159.

[10] M. Seder, L. Petrović, J. Peršić, G. Popović, T. Petković, A. Šelek, B.
Bićanić, I. Cvišić, D. Josić, I. Marković, I. Petrović, A. Muhammad,
“Open platform based mobile robot control for automation in manufac-
turing logistics“, IFAC-PapersOnLine, 2019, vol. 52, no.22, pp. 95–100.

[11] “Open platform for innovations in logistcs“, readthedocs.io, https://opil-
documentation.readthedocs.io/en/latest/ (accessed: July 8, 2022).

