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Abstract— This paper presents a solution to the automatic
task planning problem for multi-agent systems. A formal
framework is developed based on the Nondeterministic Fi-
nite Automata with ε-transitions, where given the capabilities,
constraints and failure modes of the agents involved, an
initial state of the system and a task specification, an optimal
solution is generated that satisfies the system constraints and
the task specification. The resulting solution is guaranteed to
be complete and optimal; moreover a heuristic solution that
offers significant reduction of the computational requirements
while relaxing the completeness and optimality requirements is
proposed. The constructed system model is independent from
the initial condition and the task specification, alleviating the
need to repeat the costly pre-processing cycle for solving other
scenarios, while allowing the incorporation of failure modes
on-the-fly. Two case studies are provided: a simple one to
showcase the concepts of the proposed methodology and a more
elaborate one to demonstrate the effectiveness and validity of
the methodology.

I. INTRODUCTION

Multi-agent systems operating autonomously in dynamical
environments to perform complicated tasks have been one of
the major areas of research interest during the last decade.
High-level task planning using formal methods to define the
system requirements is one of the promising approaches.
Typical objectives arise from the multi-agent systems’ be-
havior and requirements, such as sequential or reactive tasks,
control, coordination and motion and task planning.

Several proposed methodologies address the high-level
task planning problem using formal languages to express
autonomous systems behavior. Some of the most common
approaches include Linear Temporal Logic (LTL), sampling-
based approaches and domain definition languages. Many of
the existing works use LTL formulas to develop bottom-up
approaches [1]–[4] where local LTL expressions are assigned
to robots, or top-down approaches [5], [6], [7], where a
global task is decomposed into independent subtasks that
are treated separately by each agent.

In [1], a high-level plan is found by a discrete planner
which seeks the set of system transitions that ensure the
satisfaction of a logic formula. In [8], a formal method based
on LTL has been developed to model specifications and im-
plement centralized planning for multi-agent systems. Some
related works suggest that hierarchical abstraction techniques
for single-agent systems can be extended to multi-agent
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systems using parallel compositions [6], [7]. The fact that the
transitions should be on the common events to allow parallel
execution is very restrictive. In [3], temporal logic formulas
are utilized to specify sub-formulas that could be executed
in parallel by the agents, without a global task definition. In
[9], the authors tackle the multi-robot task allocation problem
under constraints defined by LTL formalism to concurrently
plan tasks for robot agents. In [10], a formal method based
on LTL has been deployed to model multi robot motion
planning specifications. Common among the above works is
the adaptation of formal verification techniques for motion
planning and controller synthesis. The two main limitations
of the above works are the exponential growth of the state
space even for relatively simple problems and the extra
computations required to express LTL formulas in Büchi
automata. In [11], authors propose a formal synthesis of
supervisory control software for multi-robot systems, while
the scalability of the approach was improved in [12].

In [13], a sampling-based approach is presented using
directed trees to approximate the state space and transitions
of synchronous product automata. The sampling process is
guided by transitions that belong to the shortest path to
the accepting states. However, these algorithms provide no
solution quality guarantee. On the other hand, implementing
PDDL [14], [15] would be time consuming for real time
applications.

Our proposed approach seeks the optimal shortest path in
a weighted graph and a case study focusing on the logistics
flow aspects was chosen.

The main contribution of this work are:
• System modeling using nondeterministic finite automata

with ε-transitions [16] expressing the system’s behavior
and combining the agents capabilities and constraints at
the individual and group level, including failure modes.

• Determination of the optimal task plan that satisfies the
task specification with-out the need to repeat the pre-
processing cycle for solving other scenarios.

• Determination of reduced complexity sub-optimal solu-
tions to the task planing problem.

• Incorporation of failure modes on-the-fly, after building
the global system model (i.e. without the need to repeat
the costly pre-processing step)

This work introduces a new approach the SuPErvisory
Control Task plannER (SPECTER) for high-level task plan-
ning problems with respect to agent capabilities, constraints
and failure modes. The problem formulation uses the envi-
ronment model composed by individual agents’ capabilities
and constraints, considering the individual agent’s failure
modes to determine the optimal task plan. This work builds
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on top of [17]. The problem is posed as a special case of
module composition problem (MCP) [18] and then reduced
to a combinatorial optimization problem of shortest dipath,
which can be solved in polynomial time. The optimal module
chain, combined with the formal approach of Supervisory
Control Theory (SCT) [19] can then be applied to synthesize
control laws and communication strategies for efficiently
accomplishing a global tasks [20]. Agents’ navigation can
be handled by a navigation methodology with performance
guarantees that ensure compositionality, like the navigation
transformation [21]. Agents’ control and navigation are not
under the scope of the current work. The active source code
of the software developed is available at [22].

The rest of the paper is organized as follows: Section
II presents the necessary preliminary notions, section III
presents the problem formulation using the ε0-NFA for-
malism while section IV exploits the ε0-NFA formalism to
reduce the problem to a Module Composition one. Section V
presents the algorithms and the analysis of the methodology
while section VI presents a case study to demonstrate the
operation of SPECTER. Section VII concludes the paper.

II. PRELIMINARIES

A. Definitions

In this section, we introduce the necessary formalisms.
If A and B are sets, the cardinality of set A is denoted

as |A|. The union and intersection of sets are denoted as
A ∪ B and A ∩ B whereas set subtraction of set B from
set A is denoted as A \B. We use the ∧ operator to denote
conjunction.

We will use the definition of Deterministic Finite Au-
tomata (DFA) by [16].

Definition 1 (DFA). A Deterministic Finite Automaton
(DFA) is a six-tuple, G = (XG, EG, fG,ΓG, x0,G, Xm,G),
consisting of:

• a non-empty finite set of states XG,
• a non-empty finite set of events EG,
• a transition function fG : XG × EG → XG,
• an active event function ΓG : XG → 2EG ,
• an initial state x0,G ∈ XG,
• a finite set of marked states Xm,G ⊆ XG

where fG is partial on its domain in the sense that if event
e ∈ Γ(x), then e labels a transition from x to a unique state
y = fG(x, e).

Definition 2 (ε0-NFA). An ε0-NFA is a Nondeterministic
Finite Automaton with ε-transitions only from the initial
state, defined as a six-tuple,

ε0G = (XG ∪ {x0}, EG ∪ {ε}, ε0fG,ΓG, x0, Xm,G),

where ε0fG : XG ∪ {x0} × EG ∪ {ε} → 2XG such that
∀(x, e) ∈ XG × EG : fG(x, e) = ε0fG(x, e), where the
variables with “G” subscript are as in Definition 1 and x0 /∈
XG is the initial state.

Corollary 1. If ε0G is an ε0-NFA then it can be converted
to the DFA G by removing x0 along with the associated ε
transitions and assigning an x0,G ∈ XG as an initial state.

Proof. This can be trivially shown by observing that the six-
tuple obtained by the operation is as the one in Definition
1.

Based on the above Corollary, we can construct the
following operator:

Definition 3. Let ε0G be an ε0-NFA and x0,G ∈ XG a state
in XG that we want to assign as an initial state. Then

∆(ε0G, x0,G) , G

where G is as in Definition 1 and the operator ∆ performs
the conversion as described in Corollary 1.

We need to associate a cost function with the transitions:

Definition 4 (Transition Cost Function). A transition cost
function for an event set EG, is defined as gG : EG → R>0.

We define the inverse transition function that implies
the transition relation backward derived from the transition
function.

Definition 5 (Inverse Transition Function). Let G be a DFA.
Define f−1

G : XG × EG → XG to be the inverse transition
function such that fG(xG, e) = yG ∧ f−1

G (yG, e) = xG for
some xG : e ∈ ΓG(xG), yG : e ∈ ΓG(f−1

G (yG, e)).

For the automata operations that will be required in the
sequel, we need to introduce the following concept:

Definition 6 (Compatible ε0-NFAs). Let ε0G and ε0B be ε0-
NFAs. Let EC = EG ∩EB . ε0G and ε0B are compatible iff
∀e ∈ EC then1, fG(xG, e) = fB(xB , e) and f−1

G (yG, e) =
f−1
B (yB , e) for some xG : e ∈ ΓG(xG), xB : e ∈ ΓB(xB),
yG : e ∈ ΓG(f−1

G (yG, e)) and yB : e ∈ ΓB(f−1
B (yB , e)). In

such case it will also be true that xG = xB and yG = yB .
We denote such a compatibility relation as ε0G � ε0B.

Note that the above definition effectively forces the end-
points of common events to be common states.

B. Operations on compatible automata

Here we introduce a custom set of the basic operations on
compatible ε0-NFAs: union, subtraction and concatenation.
The introduced operations differ from the ones found in the
automata literature [16], [23], [24] and provide the necessary
functionality for the subsequent developments.

Definition 7 (Union of Compatible Automata). For the
ε0-NFAs ε0G and ε0B, assume ε0G � ε0B. Define the
compatible automata union ε0P , ε0G ∪� ε0B to be the
six-tuple:

ε0P = (XP ∪ {x0}, EP ∪ {ε}, ε0fP ,ΓP , x0, Xm,P)

1Note that due to Corollary 1 we have that ε0fG(xG, e) ≡ fG(xG, e)
and ε0fB(xB , e) ≡ fB(xB , e).



where XP = XG∪XB , EP = EG∪EB , ε0fP : XP∪{x0}×
EP∪{ε} → 2XP such that ∀(x, e) ∈ XG×EG : ε0fP(x, e) =
fG(x, e) and ∀(x, e) ∈ XB × EB : ε0fP(x, e) = fB(x, e),
ΓP : XP → 2EP , x0 /∈ XP and Xm,P = Xm,G ∪Xm,B .

In contrast with the standard union operation on automata
presented in the literature, the above operation produces the
union instead of the cartesian product state space.

Definition 8 (Subtraction of Compatible Automata). For
the ε0-NFAs ε0G and ε0B, assume ε0G � ε0B. Define the
compatible automata subtraction ε0Θ , ε0G \� ε0B to be
the six-tuple:

ε0Θ = (XΘ ∪ {x0}, EΘ ∪ {ε}, ε0fΘ,ΓΘ, x0, Xm,Θ)

where XΘ = XG, EΘ = EG \EB , ε0fΘ : XΘ∪{x0}×EΘ∪
{ε} → 2XΘ such that ∀(x, e) ∈ XΘ × EΘ : ε0fΘ(x, e) =
fΘ(x, e), ΓΘ : XΘ → 2EΘ , x0 /∈ XΘ, Xm,Θ = Xm,G \
Xm,B .

Note that this is more in line with the set difference opera-
tor than with the intersection with the language complement
that is used in regular languages.

Definition 9 (Concatenation of Compatible Automata). For
the ε0-NFAs ε0G and ε0B, assume ε0G � ε0B. Define the
compatible automata concatenation ε0Φ , ε0G ⊥⊥� ε0B to
be the six-tuple:

ε0Φ = (XΦ ∪ {x0}, EΦ ∪ {ε}, ε0fΦ,ΓΦ, x0, Xm,Φ)

where XΦ = {uv|u ∈ XG, v ∈ XB}, EΦ = EG ∪ EB ,
ε0fΦ : XΦ ∪ {x0} × EΦ ∪ {ε} → 2XΦ such that ∀(x, e) ∈
XΦ × EΦ : ε0fΦ(x, e) = fΦ(x, e), ΓΦ : XΦ → 2EΦ , x0 /∈
XΦ, Xm,Φ = {uv|u ∈ Xm,G ∧ v ∈ Xm,B}.

Note that the operation of concatenation in Definition 9
above, is similar to the well known parallel composition
operation (see e.g. [16]) but differs in that the event sets
undergo a disjoint union in our case to ensure that only
one event can be activated at a time (no synchronization
on common events).

The concept of compatible automata, allows us to recover
the following properties for the operations of Definitions 7,
8 and 9:

Corollary 2. The automata resulting from the operations
defined in Definitions 7, 8 and 9 are ε0-NFAs.

Proof. This is trivially established by noting that for the
operations in Definitions 7, 8 and 9, the resulting automata
are six-tuples as in Definition 2. Moreover if we assume that
R is the resulting automaton from each operation, then due
to the properties of Definition 6, it will hold that for each
operation ∀x ∈ XR, then ∀e ∈ ΓG(x) ∩ ΓB(x) (if such
exists) such that fG(x, e) = fB(x, e). Hence, R will be an
ε0-NFA since it fulfils the requirements of Definition 2.

The principle of completeness asserts that the algorithm
always returns a solution (if one exists), otherwise if there
is no solution, the algorithm reports failure.

We need to introduce the following operator that addresses
individual states of concatenated states of Definition 9.

Definition 10 (Projection Operator). Assume x ∈ XG is a
state of G with |x| = n and let xi denote the i’th element
of x. Define the projector b as an n-bit binary and bi its
i’th bit. The projection operator is defined as proj(x, b) ,
{xi|bi = 1}.

We will need some definitions from MCP literature as well
as some new ones for our development. Using the module
definition by [18], we state the module in an appropriate
form for our development.

Definition 11 (Single Port Module). Let G be a DFA.
Consider the finite set of ports P = Pin∪Pout, where Pin be
a non-empty finite set of input ports and Pout be a non-empty
finite set of output ports with P ⊆ XG and Pin ∩ Pout 6= ∅.
We define the single input/single output port (I/O) module T
as a 3-tuple T , {p, e, q}, where p ∈ Pin is the input port,
e ∈ EG : fG(p, e) = q and q ∈ Pout is the output port.

T provides an output q as a response to the corresponding
input p. The cost associated with the module T is defined as
c(T) , gG(e). We can also define the inverted module T−1

where its input becomes its output and vice versa such that
Definition 5 holds.

We consider the notion of directional compatibility of
single port modules that specifies the interaction between
the modules.

Definition 12 (Directional Compatibility of I/O Modules).
Let G be a DFA and Tχ = {pχ, eχ, qχ} and Tψ =
{pψ, eψ, qψ} be modules. We define the directional compat-
ibility relation between Tχ and Tψ and we write Tχ ⇀ Tψ
iff qχ = pψ .

III. PROBLEM FORMULATION

A. Agent Model

Agents are considered as autonomous entities, such as
humans, robots, items, machines or anything that it could
change its status to act on or react to its surroundings during
a process or trigger event. An agents is modeled as an ε0-
NFA composed by the agent’s capabilities and constraints.
Agent’s capabilities represent the allowed state transitions
derived from the combination of individual capabilities and
failure mode, expressed as ε0-NFAs. Agent’s constraints
express the forbidden state transitions derived from the
union of individual’s constraints modeled as ε0-NFAs. The
agent model is produced by the subtraction of the agent’s
constraints ε0-NFA from the agent’s capabilities ε0-NFA.

Let n be the total number of agents and ε0A be the finite
set of the agents ε0-NFAs, where n = |ε0A|. We represent
the ith agent as ε0Ai, i ∈ {1, . . . n}.

1) Individual Agent Capabilities: Let κ be the total num-
ber of individual capabilities of ε0Ai and ε0Mβ,i the β’th
individual capability of ε0Ai, where β ∈ {1, . . . κ}.



2) Individual Agent Failure Mode: Consider a state q′ ∈
XMβ,i

. We define a failure mode of ε0Ai as the inability to
complete the transition from some q ∈ XMβ,i

to q′ with an
occurrence of event e ∈ EMβ,i

. This describes a detected
transition failure of ε0Ai which renders fMβ,i

(q, e) = q′

infeasible. This failure mode is modeled by the ε0-NFA ε0Fi
such that XFi = {q, q′} and EFi = {e}.

We model the agent’s capabilities as the subtraction of the
agent failure from the union of individual agent capabilities
utilizing the union and the subtraction operations of compat-
ible automata.

3) Agent Capabilities: Considering κ compatible ε0-
NFAs such that ε0Mα,i � ε0Mβ,i, α 6= β with α, β ∈
{1, . . . κ} and ε0Fi � ε0Mβ,i, the capabilities of ε0Ai are
modeled by the ε0-NFA ε0Ki as:

ε0Ki ,

{
κ⋃
β=1

�
ε0Mβ,i

}
\�ε0Fi. (1)

4) Individual Agent Constraints: Let λ be the total num-
ber of individual constraints of ε0Ai and ε0Nξ,i the ξ’th
individual constraint of ε0Ai, where ξ ∈ {1, . . . λ}.

We model the agent’s constraints as the union of individual
agent constraints utilizing the union of compatible automata
operation.

5) Agent Constraints: Considering λ compatible ε0-NFAs
such that ε0Nξ,i � ε0Nη,i, ξ 6= η with η ∈ {1, . . . λ}, the
constraints of ε0Ai are modeled by the ε0-NFA ε0Di as:

ε0Di ,

{
λ⋃
ξ=1

�
ε0Nξ,i

}
. (2)

Considering ε0Ki � ε0Di, the agent ith agent is modeled
by the ε0-NFA of ε0Ki after subtracting ε0Di:

ε0Ai ,
ε0Ki \� ε0Di. (3)

B. Environment Model

Agents are acting in the environment to reach individual
states while being influenced by state capabilities and con-
straints relating to other agents. Agents who rely on other
agents to perform actions or reach goals are grouped into a
team. The capabilities and constraints of the team are mod-
eled as a combination of individual states of the members
of the team. These capabilities and constraints, called inter-
agent capabilities and constraints, express the allowed and
not-permitted environment state transitions of those agents.
Given the agents’ capabilities and constraints and the inter-
agent capabilities and constraints, the environment model
captures all the possible combinations of agents’ states. The
procedure of constructing agents’ and environment models
is illustrated in Fig. 1, as well.

We model the environmental capabilities as the concatena-
tion of ε0-NFAs formed as in eq. 1 utilizing the concatenation
operation of compatible automata to express the allowed
environment state transitions.

Fig. 1: Information flow diagram for construction of the agents’ and
environment models ε0-NFAs.

1) Environmental Capabilities: For the ε0-NFAs ε0Ki and
ε0Kj , i 6= j with i, j ∈ {1, . . . n}, let ε0Ki � ε0Kj . The
environmental capabilities are modeled by the ε0-NFA ε0K
as:

ε0K ,
n

⊥⊥�
i=1

ε0Ki. (4)

We model the environmental constraints as the concate-
nation of ε0-NFAs formed as in eq. 2 utilizing the concate-
nation operation of compatible automata to express the not-
permitted environment state transitions.

2) Environmental Constraints: For the ε0-NFAs ε0Di and
ε0Dj , i 6= j with i, j ∈ {1, . . . n}, let ε0Di � ε0Dj . The
environmental constraints are modeled by the ε0-NFA ε0D
as:

ε0D ,
n

⊥⊥�
i=1

ε0Di. (5)

Then, inter-agents capabilities ε0-NFA and inter-agents
constraints ε0-NFA are modeled utilizing the agents’ models
formed as in eq.3 as follows:

3) Inter-Agents Capabilities: Let co ⊆ ε0A with ‖co‖ ≤ n
be a set of compatible agent ε0-NFAs. Then, the ε0-NFA
ε0KA ⊂ ⊥⊥�i∈co

ε0Ai denotes the inter-agents capabilities2

between the members of co.
4) Inter-Agents Constraints: Let co ⊆ ε0A with ‖co‖ ≤ n

be a set of compatible agent ε0-NFAs. Then, the ε0-NFA
ε0DA ⊂ ⊥⊥�i∈co

ε0Ai denotes the inter-agents constraints
between the members of co.

We model the global capabilities as the ε0-NFA of en-
vironmental capabilities (as formed in eq.4) utilizing the
union operation of environmental capabilities with inter-
agent capabilities.

2Inter-Agents Failure Modes can be defined so as to restrict Inter-Agents
Capabilities



5) Global Capabilities: For the ε0-NFAs ε0K and ε0KA,
let ε0K � ε0KA. The global capabilities are modeled by the
ε0-NFA ε0K̃ defined as:

ε0K̃ , ε0K ∪� ε0KA. (6)

We model the global constraints as the ε0-NFA of en-
vironmental constraints (as formed in eq.5) utilizing the
union operation of environmental constraints with inter-agent
constraints.

6) Global Constraints: For the ε0-NFAs ε0D and ε0DA,
let ε0D � ε0DA. The global constraints are modeled by the
ε0-NFA ε0D̃ defined as:

ε0D̃ , ε0D ∪� ε0DA. (7)

Considering ε0K̃ � ε0D̃, the environment model is con-
structed by the ε0-NFA of ε0K̃ after subtracting ε0D̃:

ε0S , ε0K̃\�ε0D̃ (8)

where the cardinality of XS is θ =
∏n
i=1 |XAi |.

C. Task Specification

Let x ∈ XS and let b be an n-bit binary indicating the
states of the agents that we are interested in specifying. The
task specification is a projection γ , proj(x, b) that indicates
the desired state of specific agents in the system.

We can now proceed to formally state the following.

D. Problem statement

Given a set of individual and inter-agents capabilities and
constraints including their failure modes, the initial state of
the system and a task specification, determine a string that
provides an optimal execution3 (in terms of total transition
cost) that brings the system from any initial state to any state
satisfying the task specification.

IV. FORMULATION AS A MODULE
COMPOSITION PROBLEM

Let us now consider the environment model ε0S and
assume that we would like to use x0,S ∈ XS as the initial
state of our system. Thus, S = ∆(ε0S, x0,S) is the DFA
description of the environment model. Let Pin ∈ XS be the
non-empty finite set of input ports and Pout ∈ XS be the
non-empty finite set of output ports, where P = Pin ∪ Pout
and Pin ∩ Pout 6= ∅. The module Tj is defined as:

Tj , {pj , ej , qj} (9)

where pj ∈ Pin, ej ∈ ES and qj ∈ Pout.
Define the ith task module as T0,i = {x0,S , e0,i, xd,i}

where proj(xd,i, b) = γ, xd,i ∈ XS and e0,i a virtual
transition from the initial to the final state. Observe that there
are |γ|! potential solutions so i ∈ {1, . . . |γ|!}.

To tackle the problem defined in the Problem Statement,
we proceed to formulate our problem as a Module Com-
position Problem (MCP) [18]. Since we are using single-
port modules, we will have a special case of the MCP

3Automata execution (or run) as defined in e.g. [16]

that is solvable in polynomial time. We define Ti as the
finite closed module chain containing T−1

0,i describing the
sequential environment states transitions during the execution
(Fig. 2) defined as:

Ti = {T−1
0,i ,T1,i, . . .Tz,i} (10)

where zi = |Ti|. In the sequel we will focus on the case
where |γ| = 1 and drop the index i.

Fig. 2: Closed module chain T with sequential single-port modules.

Let tj denote the number of instances of Tj , cj = c(Tj)
is the cost of implementing module Tj , then the discrete op-
timization problem can be posed as an integer programming
problem as follows:

min
∑

j∈{1,...|ES |}

cjtj

subject to:
t0 = 1, tj ∈ Z∗

σp =
∑

q∈Pout

wp,q,∀p ∈ Pin

µq =
∑
p∈Pin

wp,q,∀q ∈ Pout

where Z∗ denotes the non-negative integers, wp,q the number
of connections between input port p and output port q, σp
the number of modules with input port p utilized and µq the
number of modules with output port q utilized. Since in the
current work we have implemented only single port modules,
the above integer programming problem can be reduced to
the shortest directed path problem [25], that can be solved
utilizing the Dijkstra’s shortest dipath algorithm [26]. The
optimal solution composes the T that minimizes the cost of
states transitions in order to fulfil the task specification γ.

The drawback of using singe port modules in the current
work is that we are only limiting transitions to be performed
by one agent at a time. Multi-port modules are currently
being considered as a further research topic, to enable mul-
tiple agents to perform concurrent transitions and is beyond
the scope of the current work. We have to also note here
that the additional effort in casting the problem as a module
composition one, enables us to seamlessly use the generated
module chain as a model system for building supervisory
controllers as e.g. in [17], and is currently under active
research.

V. ANALYSIS

A. Task Planning Processes

In this section, we present the properties and process of
SPECTER task planner to compute the optimal plan based
on the agents’ and environment models. The SPECTER’s



process includes the pre-processing phase and the problem
solving phase.

The pre-processing phase includes the construction of the
agents models (3), the environment model (8) (see Fig.1)
and the graph of ε0S using adjacency matrix representation.
The computational time to construct ε0Ai is O(|XAi |2). The
time required to create ε0S is O(|XS |3). ε0S is converted
to a weighted directed graph HS = (VS , ES), where the
set of nodes VS corresponds to the set of states XS , the
set of edges ES is defined by fS associated with its cost
gS . The adjacency matrix representation of HS is a 2-
dimensional array XS×XS . Each element in the array stores
the cost gS related to the edge fS(x ∈ XS , e ∈ ES). The
amount of space required to store the array is O(|VS |2) in
worst case. Computational efficiency can be succeeded if
the pre-processing computations are made beforehand. The
constructed environment model can then be used to solve all
the possible task planning problems by arbitrarily choosing
the initial and target states (projection) without the need to
reconstruct the environment model.

The problem solving phase encapsulates the synthesis of
the optimal task plan and the integration of individual agent
failure mode. The Dijkstra’s algorithm is implemented over
the weighted graph HS to find the optimal task plan T as
given in Algorithm 1. In the case where a fault is detected
for the transition from state xi to xj of S (e.g. by some
fault identification system) that affects agent ν, we can
disable all the affected transitions by finding the set of states
Xi
′, Xj

′, where proj(xi, bν) ≡ proj(xi
′ ∈ Xi

′, bν) and
proj(xj , bν) ≡ proj(xj ′ ∈ Xj

′, bν). Then, we eliminate the
transitions from all xi′ ∈ Xi

′ to all xj ′ ∈ Xj
′. The above

procedures incorporates on-the-fly a possible new failure
mode into S without the need to repeat the costly pre-
processing phase. The computational time required for this
modification is θ′ =

∏n−1
i=1, i6=ν |XAi | in the worst case.

The task planning problem of minimizing the length of the
plan is NP-hard [27]. Let P be the solution to this problem
found after running Dijkstra’s algorithm and let Pi denote
it’s i’th element, i ∈ {1, . . . |P|}. In Algorithm 2, the optimal
solution can then be found by running the algorithm for all
states that satisfy the task specification, that is

∏n
i=1 |XAi |
|XAσ |

times in the worst case scenario, where σ denotes the agent
index that was used for the task specification γ. The running
time of Dijkstra’s algorithm implementing the Complete
Function of Algorithm 1 is O((VS + ES)logVS).

While this might be feasible for problems of relatively
small size, a heuristic approach is proposed to reduce the
computational time required to find a sub-optimal solution.
The proposed heuristic, implemented in Algorithm 3, main-
tains the complexity to the one of Dijkstra’s algorithm, while
sacrificing optimality and completeness. The computational
time of the proposed heuristic is O(ES logVS). We track the
solution to the minimum element k where proj(Pk, b) = γ
and use the solution P∗ = {P1, . . .Pk}. While there are
some cases where the proposed heuristic recovers optimal-
ity, a classification of those cases and the conditions for
feasibility of solutions is currently under consideration but

Algorithm 1 Create module chain T .

Require: ε0-NFA ε0S, initial state x0,S , task specification γ,
solution type ST (“Complete” or “Heuristic”)

Ensure: Module chain T
1: Initialize H to be a zero matrix
2: Initialize E to be an empty cell array
3: Initialize T to an empty set
4: S ←− ∆(ε0S, x0,S)
5: if proj(x0,S , b) = γ ∧ x0,S ∈ Xm,S then
6: return T
7: else
8: for i ∈ {1, . . . |XS |} do
9: for j ∈ {1, . . . |XS |} do

10: if ∃e ∈ ES : fS(xi, e) = xj then
11: H[i][j]←− gS(e)
12: E{i}{j} ←− e
13: end if
14: end for
15: end for
16: if ST = “Complete” then
17: [P , cost] ←− COMPLETE(H,S, x0,S , γ)
18: else
19: [P , cost] ←− HEURISTIC(H,S, E, x0,S , γ)
20: end if
21: for i ∈ {1, . . . |P| − 1} do
22: T ←− T ∪ {Pi, E{Pi}{Pi+1}, Pi+1}
23: end for
24: return T , cost
25: end if

is not part of the current work. The intuition here is to
set the goal state xd to be such that proj(xd, b) = γ and
proj(xd, b) = proj(x0,S , b) where b denotes the bitwise
negation.

B. Completeness and Optimality

We have the following results regarding the completeness
of Algorithms 1, 2:

Proposition 1. For a system constructed based on individual
and inter-agent capabilities, constraints and failure modes
of the multi-agent system as presented in Section III, the
resulting environment model of eq. 8 is complete, in the
sense that it represents all and only those state transitions
that are dictated by the automata capturing the individual
and inter-agent capabilities, constraints and failure modes.

Proof. To demonstrate the above claim we need to show that
during the composition of ε0S, no valid transitions or states
are being removed from the system and no new states or
transitions are being introduced.
(a) No states removed or added.

This can be shown by observing that from Corollary 2
the ε0-NFAs is closed under the operations of union,
subtraction and concatenation. The union operation by
Definition 7 operates only on states defined in its
arguments and the resulting states are the union of the



Algorithm 2 Complete Function.

1: function COMPLETE(H,S, x0,S , γ)
2: Initialize costmin ←−∞
3: for i ∈ {1, . . . |XS |} do
4: for j ∈ {1, . . . |XS |} do
5: if proj(xj , b) = γ ∧ xj ∈ Xm,S then
6: [P , cost] ←− Dijkstra(H, x0,S , xj)
7: if P = ∅ then
8: return Task infeasible.
9: end if

10: if cost < costmin then
11: costmin ←− cost
12: Poptimal ←− P
13: end if
14: end if
15: end for
16: end for
17: return Poptimal, costmin
18: end function

Algorithm 3 Heuristic Function.

1: function HEURISTIC(H,S, E, x0,S , γ)
2: Initialize xd to an empty set
3: Find xd ∈ Xm,S : proj(xd, b) = γ ∧ proj(xd, b) =
proj(x0,S , b)

4: Initialize c∗ ←− 0
5: [P , cost] ←− Dijkstra(H, x0,S , xd)
6: if P = ∅ then
7: return No path to xd.
8: end if
9: for k ∈ {2, . . . |P|} do

10: c∗ ←− c∗ + gS(E{Pk−1}{Pk})
11: if proj(Pk, b) = γ then
12: P∗ ←− {P1, . . .Pk}
13: return P∗, c∗
14: end if
15: end for
16: end function

argument’s states that are part of agents’ capabilities
and constraints. The subtraction operation by Definition
8 does not remove any states from the subtrahend
argument. The concatenation by Definition 9 operation
creates the cross product state space of its argument.
None of the operations introduces any state that does
not exist in its arguments.

(b) No valid events are removed and no new transitions are
introduced.
Union and concatenation operations: The resulting event
set is the union of the operator argument events. No new
events that do not exist in the arguments are introduced.
Subtraction operation: The resulting event set includes
only the events that are in the subtrahend and not in
the subtractor’s event set without introducing any new
event. In particular failure mode events are removed

from individual agent’s capabilities with subtraction
operation without affecting any other events. The event
set of global constraints are removed from global capa-
bilities without affecting events that are not included in
the global capabilities event set.
Any event that is in the individual or inter-agent ca-
pabilities and is not in the failure modes, individual
constraints or inter-agent constraints event sets will be
included in the environment model. Any event that is
in the failure modes event set (but not in the inter-agent
capabilities) as well as any event in the individual or
inter-agent constraint event set, will not appear in the
environment model event set. No events that are not
included in the individual and inter-agent capabilities
will appear in the environment model event set.

Hence all and only transitions that are valid will appear in
the environment model’s event set.

With the completeness property in place we can now state
the following result about the optimality properties of the
proposed system:

Proposition 2. For a system constructed based on individual
and inter-agent capabilities, constraints and failure modes
of the multi-agent system as presented in Section III, and
assuming that only one agent is allowed to operate at any
time instant, the solution of Algorithm 1 with the ”Complete”
solution type of Algorithm 2, produces the optimal sequence
of actions to achieve task plan γ.

Proof. Since according to Proposition 1 the environment
model is complete, then all (if any) optimal solutions are
encoded in the transition system imposed by the transition
function of the environment model. The module composition
problem is an integer optimization problem and in our case
maps the task planning problem to the shortest directed path -
a graph search problem. The implemented Dijkstra’s solution
is both complete and is guaranteed to find an optimal solution
if such a solution exists.

VI. CASE STUDIES

The proposed methodology could be applied in various
applications, such as manufacturing logistics. To demonstrate
the applicability of the proposed methodology, two case
studies are presented related to a manufacturing logistics
workflow, implemented on a computer with AMD Ryzen
5 4500U 2.3 GHz and 16GB RAM. In first case study,
we consider a non-trivial logistic problem of appropriate
size that permits an effective illustration with ε0S that has∏n
i=1 |XAi | = 560 states. The second case study pertains

to a pattern of logistic workflows on manufacturing. This
scenario is considered to face the challenges of productivity,
efficiency and effectiveness of internal logistics management
and agent automation in the workflows. In this case, ε0S
has

∏n
i=1 |XAi | = 1.875 × 106 states. In both case studies,

the module chains T provided either by the “Complete” or
“Heuristic” options are identical and the edges of automata
are associated with time costs in seconds.



A. Case Study I

We consider the team of n = 4 agents with ε0A =
{ε0A1,

ε0A2,
ε0A3,

ε0A4}, where ε0A1, ε0A2, ε0A3, ε0A4 denote
the robots R1 and R2, the human W1 and the item I1,
respectively. Agents are on their initial state as shown in

Fig. 3: Mock-up factory plant and agents.

the plant of Fig. 3. E and Ψ denote the docking stations of
robots R1 and R2, respectively. W1 is located at work-cell
Γ and I1 is at A. The objective task is to transport I1 to B
in minimum time. Automata that are missing from the case
study are considered as empty automata. Robot coordination
and navigation is handled by appropriate controllers whose
description is beyond the scope of the current work.

We consider that XA1
∩XA2

∩XA3
∩XA4

= {A,B,Γ}.
R1 and R2 denote the payload of ε0A1 and ε0A2 in XA4 (i.e.
I1 can be loaded to R1 or R2). We define the capabilities
and the constraints of ε0A1,

ε0A2,
ε0A3,

ε0A4 as illustrated
in Fig. 4 and 5 using equations (1) and (2). Subtracting
ε0D1 from ε0K1 and ε0D2 from ε0K2, we generate ε0A1

and ε0A2. Since ε0D3,
ε0D4 = ∅, ε0A3 and ε0A4 are derived

from ε0K3 and ε0K4 respectively. Using the concatenation
of ε0K1, ε0K2, ε0K3 and ε0K4, we generate the ε0K ε0-
NFA. Using the concatenation of ε0D1 and ε0D2, we extract
the ε0D ε0-NFA. In Fig.6, ε0KA states the loading and
unloading actions and defines the inter-agent capabilities
between R1, R2, W1, I1. Adding ε0KA to ε0K, we construct
ε0K̃. Considering that ε0DA = ∅, then ε0D̃ = ε0D. Finally,
the model of ε0S is given by subtracting ε0D̃ from ε0K̃ using
equation (8), where ε0XS =

∏n
i=1 |XAi | = 560 states.

We state γ as proj(xd, b) = B, where b = 0001. The
task planning problem here is to find the optimal T that
takes proj(x0,S , b) = A to γ utilizing the robot agent that
minimizes the transition cost for the task execution subject
to given environment capabilities and constraints.

The optimal T computed by SPECTER with the heuristic
option after the failure mode incorporation resulting to a
composition of 6 open chain modules and it is presented in
Fig. 8. The solution utilized the heuristic option. In words,
(T1) R1 navigates from E to the pick-up location A in 10s,
(T2) W1 moves from Γ to A to load the payload on R1,
(T3) W1 loads I1 on R1 in 3s, (T4), A1 moves from A to
B carrying the payload in 15s, (T5), W1 moves to B, and
(T6) W1 unloads I1 at B. The task is completed in 55s. Even
though R2 is closer to I1, it is not utilized due to its failure
mode (Fig. 7).

Fig. 4: State transition graphs of agents’ capabilities.

Fig. 5: State transition graphs of agents’ constraints.

As defined in section IV, q(T−1
0 ) = x0,S = EΨΓA and

p(T−1
0 ) = xd = EΨΓB (line 2, Algorithm 3). From the

solution P provided in step 4 of Algorithm 3 the first time
that the expression in step 10 holds is for k = 7 where
Algorithm 3 returns the solution to Algorithm 1 and the
module chain is constructed.

The pre-processing runtime to construct agents and en-
vironment ε0-NFAs is 3.816 × 10−2. The problem solving
runtime to find the optimal T with the heuristic option is
1.245×10−3 seconds whereas 5.952×10−3 seconds running
the complete option. SPECTER yields the same solution for
the optimal T with the complete option for all the 80 possible
xd’s for which we have that proj(xd, b) = B. Both module
chains T provided either by the “Complete” or “Heuristic”
options are identical in this scenario case.

B. Case Study II

In this case study, we identified a pattern of two regular
workflows concerning the manufacturing of semi-finished
products 1 and 2 and final products 1. The construction
of semi-finished products 1 require raw materials 1 and 2
whereas the semi-finished products 2 require raw material 3.
The semi-finished products 1 are produced by the injection
machine 1. The semi-finished products 2 are created by
injection machine 2. Entities produced by injection machines
are collected at stations J or C. The semi-finished products
1 are passed through the conveyor 2 to the packing machine.



Fig. 6: State transition graphs of inter-agents capabilities.

Fig. 7: State transition graphs of failure mode.

The final products 1 are created from semi-finished product
1, which are passed through the conveyor 2 to the packing
machine. Packed entities are collected at station F and then
are transported to Warehouse.

To model the two workflows requires to define the
agents involved in the workflow processes, such as material,
products, robots and workers. We consider that n = 9
with ε0A1,

ε0A2,
ε0A3 define the raw materials 1, 2 and 3,

ε0A4,
ε0A5 denote the semi-finished products 1 and 2, ε0A6

denotes the final product 1, ε0A7, ε0A8 model robots 1 and 2
and ε0A9 models the human-worker, where ∀i ∈ {1, ...n} :
ε0Ai ∈ ε0A. The initial states of the agents are: Raw materials
1, 2, 3 are stored, each robot is at its docking station and
the human is in Warehouse. The objective tasks are: (a)
produce ε0A6 and store it in Warehouse and (b) produce
ε0A4 and ε0A5, both in minimum time. Robot coordination
and navigation is handled by appropriate controllers whose
description is beyond the scope of the current work.

Models of ε0A7, ε0A8 and ε0A9 are constructed by comb-
ing the agents capabilities and constraints. Capabilities and
constraints of ε0A1,

ε0A2,
ε0A3,

ε0A4,
ε0A5,

ε0A6 are defined as
in inter-agent capabilities and constraints. ε0S is constructed,
where XS =

∏n
i=1 |XAi | = 1.875× 106 states. We state γ

as proj(xd, b) = JCW , where b = 000111000.
The optimal T computed by SPECTER with the heuristic

option resulting to a composition of 24 open chain modules.
In words, (T1) raw materials 1, 2, 3 are stored in W ,
robots are at their docking stations, worker is at W , (T2)
robot 1 goes to W , (T3) worker loads the raw material 3
to robot 1, (T4) worker loads raw material 2 to robot 1,
(T5) worker loads raw material 1 to robot 1, (T6) worker
goes to injection 2, (T7) robot 1 goes to injection 2 while
carrying raw materials, (T8) worker unloads raw material 3
from the robot 1 and loads the raw material 3 to the C, (T9)
robot 1 goes to injection 2 while carrying raw materials 1
and 2, (T10) worker goes to injection 2, (T11) C starts the
production of semi-finished product 2, (T12) worker unloads
raw material 2 from robots 1 and loads the raw material 2
to J , (T13) injection machine starts the preparation of semi-
finished product 1, (T14) worker unloads raw material 1 from
robot 1 and loads the raw material 1 to J , (T15) injection

Fig. 8: Task plan as the optimal T with the “Heuristic” option.

Fig. 9: Factory plant.

1 starts the production of semi-finished product 1, (T16) the
final product 1 is produced at F a, (T17) semi-product 2 is
produced by C, (T18) worker goes to F a, (T19) robot 2
goes to F a, (T20) worker loads final product 1 on robot
2, (T21) robot 2 goes to W , (T22) semi-finished product 1
is produced by J , (T23) worker goes to W , (T24) worker
unloads the final product 1 from robot 2 to W .

The pre-processing runtime to construct the agents and
environment models is 3.081 × 105. The problem solving
runtime to find the optimal T utilizing the heuristic option
is 165.73 seconds whereas 1.072 × 104 seconds required
to implement the complete option. SPECTER yields the
same optimal T using the heuristic option for all 15000
possible xd’s for which we have that proj(xd, b) = JCW .
T provided either by Algorithm 2 or 3 are identical.

VII. CONCLUSIONS

A new multi-agent task planner approach, the SuPErvisory
Control Task plannER, SPECTER has been proposed. Given
the capabilities, constraints and failure modes of the agents
under the framework of NFAs with ε-transitions, SPECTER
produces optimized solutions, providing the sequence of
tasks for transporting the state of the environment from
any initial to any given destination state. The developed
algorithms can provide a complete solution with optimal-
ity guarantees whenever a solution exists. By relaxing the
completeness property requirement, an option providing a
significant reduction in the computational requirements is
proposed, that provides suboptimal solutions through the
use of efficient heuristics. The results of the case studies
demonstrate the applicability as well as the effectiveness
and validity of the proposed methodology in successfully



generating optimal executions for multi-agent systems with
a predetermined set of individual capabilities and constraints
as well as agent coupling capabilities and restrictions. Future
work will focus on combining SPECTER with supervisory
control theory to enable reactive execution in dynamic envi-
ronments.
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